The generator matrix

 1  0  1  1  1 X^2  X  1  1  1  1  0  1  1 X^2  1  1 X^2 X^2+X  1  1  1  1  0  0  0 X^2+X  X  0  1  1  1  1  1  1  1  1  X  1  1
 0  1  1 X^2+X X^2+X+1  1  1 X^2 X^2+1  X X+1  1 X^2+X X^2+X+1  1 X^2 X^2+1  1  1  0 X+1  X  1  1  X  X  1  1  0 X^2  0  X X^2+X X^2 X^2 X^2+X X^2+X X^2  X  X
 0  0  X  0 X^2+X  X X^2+X  X X^2 X^2+X  0 X^2 X^2  X  X  X X^2 X^2 X^2+X X^2  0 X^2+X X^2+X  0 X^2+X  X  0  0  X  0  0 X^2 X^2 X^2 X^2+X X^2+X  0 X^2+X X^2+X  X
 0  0  0 X^2  0 X^2  0  0 X^2 X^2  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2  0 X^2  0 X^2  0  0 X^2 X^2 X^2  0 X^2
 0  0  0  0 X^2 X^2  0 X^2  0  0 X^2 X^2 X^2  0  0 X^2  0 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2 X^2 X^2 X^2

generates a code of length 40 over Z2[X]/(X^3) who�s minimum homogenous weight is 36.

Homogenous weight enumerator: w(x)=1x^0+97x^36+128x^37+134x^38+168x^39+113x^40+96x^41+76x^42+80x^43+50x^44+32x^45+14x^46+8x^47+17x^48+9x^52+1x^56

The gray image is a linear code over GF(2) with n=160, k=10 and d=72.
This code was found by Heurico 1.16 in 0.0552 seconds.